EXTRAORDINARY DIPHYODONTY-RELATED CHANGE IN DENTAL FUNCTION FOR A TOOTH OF THE EXTINCT MARSUPIAL EKALTADETA IMA (PROPLEOPINAE, HYPSIPRYMNODONTIDAE)

S. WROE and M. ARCHER
School of Biological Science, University of New South Wales, NSW 2052, Australia

(Accepted 18 January 1995)

Summary—A time-dependent, fundamental change in function for a sectorial tooth in a group of extinct, propleopine kangaroos is reported. In juvenile Ekaltadeta ima (Marsupialia, Hypsiprymnodontidae, Propleopinae) the second premolar (P2) functions as a serrated blade at the anterior end of the cheek tooth row. In adults, this tooth drops far below the occlusal plane of the cheek tooth row where it assumes a completely different function, that of a buttress, anterolingual to the base of the crown of the much larger, newly erupted third premolar (P3). This pattern of diphyodonty-related change in dental function is unique within Mammalia. It also represents an extraordinary example of biological recycling of a normally discarded tooth.

Key words: tooth replacement, Ekaltadeta ima, diphyodonty.

INTRODUCTION

In mammals generally, tooth replacement normally involves eviction (shedding) and replacement of a pre-existing deciduous (primary) tooth by a successional tooth in the same tooth family. In marsupials, the only postcanine deciduous tooth is dP3 which is replaced by P3 (Flower, 1867; Luckett, 1993). Among marsupials, kangaroos (Macropodidae) have a uniquely derived tooth replacement condition in which the erupting P3 evicts P2 as well as dP3 (Dental homology here follows Luckett (1993) for dP3 and P3 and Flower (1867) for the rest of the dentition.) Among living macropodoids, the musky rat-kangaroo, Hypsiprymnodon moschatus (Hypsiprymnodonidae, Hypsiprymnodontinae), presents a more primitive condition than other kangaroos in that the P2 persists briefly after the P3 erupts with loss of dP3 (Woods, 1960). This condition in H. moschatus has been seen as structurally intermediate between the more conventional marsupial condition and the more derived condition of other kangaroos (Flannery, 1987).

The extinct, probably carnivorous (Wroe, 1995) propleopine rat-kangaroos (Propleopus, Jackmahoneya and Ekaltadeta) (Hypsiprymnodontidae, Propleopinae) are regarded to be the sister taxa of the hypsiprymnodontines. Hypsiprymnodontids as a whole are considered to represent the sister taxa to all other kangaroos (Ride, 1993). Following the discovery of abundant remains of the Oligo-Miocene Ekaltadeta ima (Archer and Flannery, 1985), it is now evident that this propleopine is unique within Mammalia in its tooth replacement system.

MATERIALS AND METHODS

Observations and conclusions presented in this paper are based on a study of eight juvenile and nine adult maxillae and dentaries of E. ima from the Oligo-Miocene deposits of Riversleigh in north-western Queensland. The prefix QMF indicates specimens registered in the fossil collections of the Queensland Museum. The prefix AR indicates specimens held in the research collections of the Vertebrate Palaeontology section of the School of Biological Sciences in the University of New South Wales. Juvenile dentaries include: AR 10899, AR 12116, AR 10561, AR 5247 and QMF 30222. Juvenile maxillae include: AR 17444, AR 12119, AR 16759, AR 13564 and AR 16902. Adult dentaries include: AR 11236, AR 11267, QMF 22761 and QMF 23888. Adult maxillae include: AR 5471, AR 16745 and AR 12837. Comparative material included specimens representing sixteen adult and two juvenile Hypsiprymnodon sp. (a new species whose description is in progress) also from the Riversleigh deposits as follows: juvenile dentary, QMF 23652; juvenile maxilla, QMF 11102; adult dentaries, AR 10704, QMF 24621, QMF 23463, AR 10861, AR 11098, AR 14082, AR 15134, AR 10724, AR 10913 and AR 13566; adult maxillae, AR 13569, AR 11075, AR 12087, AR 14826, AR 13394, AR 13998 and AR 10645. Casts of single dentaries of three late Cainozoic propleopines were also available as follows: the late Pleistocene Propleopus oscillans (AR 237, cast of holotype), the late Pleistocene P. wellingtonensis (AR 110, cast of holotype) and the Pliocene Jackmahoneya toxoniensis (AR 17579, cast of holotype). Jackmahoneya
toxoniensis was described by Ride (1993); Propleopus was reviewed by Archer and Flannery (1985).

Two aspects of diphyodonty in *E. ima* were investigated; firstly the persistence of P2 and secondly the functional value of P2 in the adult dentition.

Determining the longevity of P2 in the adult dentition was important both as a possibly unique character among macropodoid marsupials and for its relevance to the second feature examined, that of P2 function in the adult. To establish the persistence of P2, both molar wear and the relative timing of eruption for P3 and M4 in *E. ima* were considered as

Fig. 1. Juvenile left dentary (top) and adult left dentary (bottom) of the Oligo-Miocene rat-kangaroo, *Ekaltadeta ima*. In the juvenile (AR 5247), P2, dP3, and M3-2 are erupted; P3 is visible in the crypt below dP3. In the adult dentary (AR 11267), I1, P3, and M3-4 are erupted and in the occlusal plane; following the eruption of P3, the P2 has dropped into its secondary position as a buttressing tooth, ventral and antero-lingual to the P3 crown. The P2 undergoes the same age-related change in position and function in the upper tooth row. Magnification ×1.89 (AR 5247) and ×1.67 (AR 11267).
indicators. The degree of wear on the molars is an obvious indicator of age. The stage of development in the eruption sequence has also been used to estimate age in macropodoids (Kirkpatrick, 1964, 1965). Marsupials are considered to be adult with the complete eruption of P3 and ejection of dP3 (Thomas, 1888). Among living macropodoids the eruption sequence of P3 relative to M4 is variable (Tate, 1948). In many macropodoids P3 erupts before M4. If this was the case for E. ima then the presence of P3 in specimens containing P2 and M4 would have indicated retention of P2 well into the adult life of the animal. To aid in establishing the eruption programme for E. ima, specimens of other hypsiprymnodontids were examined.
Demonstration of a functional role for P₂ in the adult dentition required investigation, as the persistence of P₂ in the adult might alternatively be explained as the retention of a primitive character with no functional value. Subsequently the position and orientation of P₂ in adult and juvenile *E. ima* were compared with those of other hypsiprymnodontids and considered in terms of possible adaptive significance.

RESULTS

Adult (AR 11627, AR 16745 and QMF 22761) and juvenile (AR 5247) specimens of *E. ima* are shown in Figs 1–4. In six of the nine adult specimens of *E. ima*

*Fig. 3. Adult *E. ima* maxilla (AR 16745) in occlusal view (top) and buccal view (bottom). Magnification ×2.26.*
Diphyodonty and a dual function tooth

Fig. 4. Adult left dentary (QMF 22671). Occlusal view (top) with P2 persisting in clearly aged specimen with well worn dentition and M4 erupted. Anterior view (bottom) showing position of P2 relative to P3. P2 closely abuts the P3 antero-lingually beneath the bulbous P3 crown. Anteriorly directed dislodging forces acting on P3 would have depressed the P2 crown into its alveolus and surrounding dentary. Magnification \(\times 2.04 \) (top) and \(\times 4.22 \) (bottom).

(four dentaries and two maxillae), P2 was firmly fixed in alveolus (AR 11267, AR 5471, AR 16745, AR 3655, AR 12805 and QMF 22761). In the remaining three adult specimens (AR 11236, AR 12837 and QMF 23888), although P2 was missing the alveolus was open with no evidence of ossification, suggesting that in these individuals P2 was lost before fossilization. In five adult E. ima specimens (AR 11267, AR 5471, AR 16745, AR 3655 and QMF 22761) possessing complete cheek-tooth rows, P2 persisted with a completely formed but unerupted P3, although M4 had fully erupted. In two adult Ekaltadeta ima
specimens containing P2 and P3 (QMF 22761, Fig. 4; and AR 3655) the molar rows were well worn. Juvenile *E. ima* dentary (QMF 30222) had a completely formed P3 but unerupted P2 in its crypt. In this same specimen the M4 crown had only partially formed whilst the M4 crown had not yet begun to calcify. In contrast, among the 13 adult Hypsiprymnodon sp. examined the P2 alveolus was gone having been clearly ossified/filled with secondary bone. The only exception was dentary fragment AR 10861, which retained an open alveolus. Similarly, in the adult Propleopus oscillans (AR 237), *P. wellingtonensis* (AR 110) and Jackmahoneya toxoniensis dentaries, P2 had been shed and no evidence remained of an alveolus for P2. For two of the Hypsiprymnodon sp. specimens from Riversleigh the P2 was lost and its alveolus completely filled, although M4 had not yet erupted (AR 11098 and AR 13566). In a single Hypsiprymnodon sp. adult the alveolus for the evicted P2 had not completely ossified (AR 10861); the posterior portion of the dentary, including the region of M4, was missing.

The position of P3 relative to P2 showed no variation between any of the six *E. ima* specimens which contained both teeth in either the upper or lower dentitions. In Ekaltadeta ima, as for all hypsiprymnodontids, P2 was angled obliquely away from the long axis of the alveolar row of the dentary or maxilla (Figs 2–4). This was also the case for P3 in juveniles (i.e, where P3 had not yet erupted). In the six adult *Ekaltadeta ima* specimens containing both P2 and P3, the P2 sat below the occlusal plane in the dentary, or above in the maxillae, with the posterior part of the P2 shearing crest contacting the buccal plate of the P3 crown. This point of contact was about half-way along the lingual face of P3 (Fig. 4). The buccal torsion observed in the P3 of juveniles was not evident in any of the adult specimens examined, P2 being oriented instead in line with the molars. Among *E. ima* juveniles, P2 was a tri-rooted tooth. In adult *E. ima* the P2 posterior roots were almost completely resorbed, but the anterior root was only partly resorbed. The length of the P2 anterior root could not be determined in most specimens where the root remained in situ, with the exception of AR 11267 (Figs 1 and 2) and AR 5247 (Figs 1 and 2) where the anterior root was exposed. An estimate for P2 anterior root length was found by measuring the depth of the root’s alveolus in specimens where P2 was missing (AR 11236, QMF 23888 and AR 12873). The anterior root measured 8.15 mm in the juvenile dentary AR 5247 and 6.41 mm in juvenile maxillae AR 13564. The measurements of P2 anterior root length in adult *E. ima* were as follows: AR 11267 (dentary), 5.03 mm; QMF 23888 (dentary), 5.35 mm; AR 11236 (dentary), 5.22 mm; AR 12873 (maxilla), 4.95 mm. Our interpretation of these data is presented below.

DISCUSSION

The persistence of P2 in *Ekaltadeta ima* into adulthood is supported by the presence of this tooth in six adult specimens (i.e. with P2 erupted), including two with well-worn dentitions, and by the lack of ossification in the P2 alveolus of the three adult specimens where P2 is missing. Longevity of P2 in the adult dentition of *E. ima* is further supported by the presence of P3 in tooth rows that also contain an erupted M4. Although the timing of eruption for P3 relative to M4 is variable among living macropodoids, there are no known macropodoids contemporaneous with *E. ima* in which M4 erupts before P2 (B. Cooke, personal communication). The P2 of *H. moschatus* may persist for a short period after the eruption of P3 (upper and lower dentitions), but is lost before the eruption of M4 (Woods, 1960; Ride, 1961). In two of the Hypsiprymnodon sp. specimens from Riversleigh the P2 is lost and its alveolus completely filled, although M4 is not yet erupted (AR 11098 and AR 13566). This demonstrates that the eruption sequence of *H. moschatus* is also common to the Riversleigh species of Hypsiprymnodon. In a single Hypsiprymnodon sp. adult, the alveolus for the ejected P2 has not completely ossified (AR 10861). Precise determination of this animal's age is impossible, though a lack of wear on the two preserved molars (M1,2, the rest having been lost in fossilization) suggests that this is a young adult. In the other hypsiprymnodontid taxa (*Propleopus, Jackmahoneya*) there is no evidence for persistence of P2 beyond early adulthood, with the P2 shed and its alveolus completely ossified in every known specimen. In *E. ima* all specimens with P2 also contain M4, or lack the posterior portion of the dentary. However, in juvenile dentary QMF 30222, the P2 crown has completely formed in its crypt, although it has not yet erupted, whilst the M4 crown has only partially formed and the M4 crown is clearly uncalcified. We consider this convincing evidence that the eruption programme in *E. ima* resembles that of the species of Hypsiprymnodon, with P2 erupting before M4. Subsequently we regard the presence of P2 and M4 together in *E. ima* as indicative of persistence of P2 in the dentition beyond early adulthood.

Most remarkable in *E. ima* is not the persistence of P2, but its time-dependent dual function. Support for a successional dual function of P2 rests on two premises: (1) the clear change of position for P2 from juvenile to adult; (2) demonstration of an adaptive advantage imparted by this change. The change in position of P2 is clearly documented. In adult *E. ima* when P3 erupts P2 is lowered (Fig. 3) to sit well below the occlusal plane, and the buccal torsion in P2 evident in the juvenile is reversed in the adult (Fig. 2). In the species of Hypsiprymnodon, the closest relatives of *E. ima* in which the process of P2 eruption can be observed, P2 sometimes remains for a short period but it does not drop below the occlusal plane, nor is the buccal torsion observed in the juvenile reversed in the adult. The adaptive advantage in retaining and repositioning P2 is best explained in terms of the value of buttressing for P3. The large size and marked buccal torsioning of P2 in *E. ima* renders the tooth susceptible to anteriorly directed dislodging forces during mastication. Buccal torsioning of P2 diverts these dislodging forces away from the region of greatest support in the dentary or maxilla (S. Wroe, unpublished observation). The repositioned P2 in the adult is well situated to counter these forces, being tucked anteriorly under the lingual face of the P3 crown and realigned to follow the long axis of the dentary or maxillary. The P2 may not be strongly
anchored in the adult *E. ima* dentary, being secured only by the single, diminished anterior root. Data available suggest that the anterior root length is not greatly reduced in the adult. In juvenile *E. ima* the P₂ anterior root length is 8.15 mm in the dentary (AR 5247) and 6.41 mm in the maxilla (AR 13564); this compares with adult measurements ranging from 5.03 to 5.35 mm in three dentaries (AR 11267, QMF 23888, AR 11236 and AR 12873) and 4.95 mm in a single maxilla (AR 11236). We believe this reduction in root length does not significantly detract from the tooth’s role as a buttress because the primary supporting function of P₂ is provided by the P₃ crown. Depression or anteriorly directed force on P₃ would push the P₃ crown deeper into its alveolus or against the surrounding dentary or maxilla into which the tooth is already partly recessed.

In conclusion, our understanding of this situation is as follows, focusing on circumstances in the lower dentition of *E. ima* which mirror similar events in the upper dentition. The crown of P₂ in juveniles functioned as part of the cheek-tooth row. Its blade formed the anterior half of a longitudinal shearing unit whose posterior half was the laterally compressed trigonid of dP₃. In adults, the much larger P₃ evicted dP₃ and fixed in position adjacent to the anterior flank of M₁. The erupting P₂ of *E. ima* did not, however, evict P₃. Instead, almost complete resorption of the posterior roots of P₂ and partial resorption of the anterior root, which occurred as the P₂ crown developed in its crypt, enabled P₂ to drop deeply into its alveolus and realign with the long axis of the dentary. In this new position P₂ was established well below the level of the adult tooth row (Fig. 1). Anchorage for P₂ at this point was provided by the remaining anterior root. In its new position it abutted P₃, anterolingually just below the base of the P₃ crown, providing basal support for this large sectorial tooth. P₂ evidently persisted as part of the adult dentition, unlike the condition of any other kangaroo.

The way in which this dual-function system evolved is enigmatic. How the P₂ was physically depressed (or withdrawn) into and subsequently fixed within the anterior recess of the eruption alveolus of P₃ is unclear. We assume that the primary selective pressure controlling crown shape in P₂ is the need for a minimum absolute length of sectorial blade in juveniles as well as adults. This need is served by having the combined lengths of the P₂ blade plus the trigonid of dP₃ closely approximate that of the blade length of P₃ (the tooth that normally displaces both the P₂ and dP₃ in adults; Wroe, 1995), a pattern common among diprotodontian marsupials (Archer, 1984).

We are unaware of any other group of mammals in which a tooth, or for that matter any organ, comes to serve such a profoundly different function at different stages in the animal’s post-embryonic life. In the extinct multituberculates and some marsupials (the extinct polydolopids, burramyids) with serrated anterior cheek teeth, diminutive premolars sometimes provide basal crown support for the primary sectorial blade (Marshall, 1982) but in these groups the buttressing crowns never serve a prior purpose of the kind that P₂ did in *Ekaltadeta ima*. Evolutionary opportunism of this kind, involving recycling of a normally discarded organ for an entirely different purpose, may be unique to these kangaroos.

Acknowledgements—We acknowledge the vital support our research has had from the Australian Research Council; the National Estate Grants Scheme (Queensland); the Department of Environment, Sports and Territories; the Queensland National Parks and Wildlife Service; the University of New South Wales; IBM Australia Pty Ltd; ICI Australia Pty Ltd; the Australian Geographic Society; Wang Australia Pty Ltd; the Queensland Museum; the Australian Museum; Mt Isa Mines Pty Ltd; Surrey Beatty & Sons Pty Ltd; the Riversleigh Society Inc.; the Royal Zoological Society of New South Wales, the Linnean Society of New South Wales, and many private supporters.

REFERENCES